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Extended Abstract: This paper describes a nonlinear surface heat flux calibration method 

based on rescaling principles and time-step linearization. This concept is presently developed 

in the context of a single in-depth temperature measurement based on linear calibration 

formulation approach described in Refs. 1-3. In aerospace engineering, inverse heat 

conduction [4] is a critical and highly practical topic as its application involves a variety of 

valuable and fundamental studies, such as short- and long-duration, ground- and flight-based 

experiments. Hypersonic flight requires reliable and predictable thermal protection systems 

(TPS) in order to maintain the structural integrity of the flight vehicle. Hence, establishing the 

suitability of materials for predefined flight scenarios is highly important. Optimal selection 

of TPS requires accurate predictions of the surface heat flux and temperature that accounts 

for thermophysical property variations as a function of temperature.  

 

In the context of a linear framework, a transformative calibration methodology with 

experimental verification has been proposed at the University of Tennessee, Knoxville that 

provides accurate resolution of the surface heat flux. This method relates the net unknown 

surface heat flux to a calibration run surface heat flux and the corresponding in-depth 

temperature measurements during the calibration and run stages. The resulting inverse 

statement is expressed in terms of a Volterra integral equation of the first kind for unknown 

surface heat flux. It possesses a physical meaning in terms of input-output variables (input: 

the known surface net heat flux at the calibration stage; and, output: measured temperatures 

at both the calibration and run stages). Due to ill-posed nature of this inverse problem, it is 

necessary to stabilize the resulting Volterra integral equation of the first kind through 

regularization. In this process, determining the optimal regularization parameter that provides 

a stable and accurate prediction without over-smoothing the result is sought. That is, the 

predicted result should keep a balance between excess high frequency noise and insufficient 

low frequency signal. For the present formalism, a good regularization can be introduced 
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through either local-future information approach [1-3,5] and/or singular-value decomposition 

[6,7].  

   

The nonlinear governing equation for one-dimensional conduction heat transfer in a slab with 

an adiabatic back surface at x=L is given by [8] 

 

                                                                   (1a) 

 

subject to boundary and initial conditions of 

 

 

                                                                  (1b-d) 

 

 

 

The calibration integral formulation proposed in Refs. 1-3 for constant thermophysical 

properties applicable to this geometry is 

 

                                                                   (1e) 

 

where Tc is the difference between the measured calibration temperature at some depth b>0 

and the initial temperature To; qc” is the net surface heat flux imposed during the calibration 

test; Tr is the difference between the measured temperature of the same thermocouple in 

response to an unknown heat flux and its initial temperature To; and qr” is the unknown 

surface heat flux to be predicted. This calibration integral equation has broad appeal as it is 

valid for the semi-infinite geometry as well as a finite slab where the back surface is 

subjected to the same constant heat transfer coefficient between the two runs. 

 

The linear one-probe calibration model has been experimentally verified [3] to a good 

accuracy for a maximum slab temperature of 100
o
C. However, in hypersonic flight, a large 

temperature variation is expected due to aerodynamic heating effects. Under flight conditions, 

the variable property effects may be significant depending on the material and temperature 

range such that a linear model will no longer be applicable. In this paper, a piecewise 

(time-step linearization) assumption is proposed to extend the linear approach given in Eq. 

(1e) to a new rescaled time domain and heat flux calibration formulation that is applicable to 

the heat equations given in Eq. (1a-d) even though the nonlinearity dominates.  

 

The proposed approach involves a whole time domain discretization including a successive 

series of small time steps, Δt, in any of which all thermal properties are assumed to be 

constant throughout the spatial domain but differ between the time steps. Through this 

simplification, the nonlinear governing equation for the one-dimensional problem with an 

adiabatic back surface could be expressed equivalently in a series of linear governing 
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equations whose thermophysical properties have been evaluated at their respective small time 

step Δt using the measured temperature at that time step.  

 

Because the local temperature magnitudes have a pronounced variation among different time 

steps, it is necessary to rescale the time domain and heat flux magnitude based on the precise 

thermal property functions such that all the piecewise governing equations and boundary 

conditions keep consistency for each time step. The rescaled in-depth temperature is then 

considered as a linear thermal response from a rescaled surface heat flux. Thus, the linear 

calibration method as defined in Eq. (1e) becomes valid. To review, the major assumption for 

this approach is that at every moment, the distribution of thermophysical properties in spatial 

domain could be considered as uniform or close to uniform. It is interesting to note that this 

formulation still provides excellent accuracy for some materials with low thermal diffusivity 

(stainless steel) where a large temperature difference in the spatial domain may be observed.  

 

Consider the problem in Eq. (1a-d) with the assumption of piecewise time-step linearization. 

In any small time step from iΔt to (i+1)Δt, the governing equation can be rewritten as  

 

                                                                   (2a) 

 

subject to boundary and initial conditions of 

 

 

                                                                           (2b-d) 

 

 

 

 

Let (t-iΔt)=niu and multiply both sides of boundary condition at x=0 by the constant mi.  

Doing so, we can recast the original system into the rescaled and transformed system given as  
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Next we define 
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Using the above definitions, Eq. (3a-d) can be simplified to  

 

 

 

                                                                 (5a-d) 

 

 

 

 

 

 

It is easy to observe that all the thermophysical properties in Eq. (5a-d) are constant and 

independent of the index of time step i. As a result, if all the temperatures (Ti) from time zero 

(i=0) to final time (i=N) are collected in sequence then it becomes the linear thermal response 

from the heat flux following the reconstitution of miqi” from i=0 to i=N.  

 

To obtain a final form of the new rescaled time domain and heat flux calibration equation, we 

define 

 

 

 

                                                                      (6a-c) 

 

 

 

 

The resulting Volterra integral equation of the first kind becomes: 

 

                                                                    (6d) 

 

Once the unknown heat flux in rescaled time domain has been predicted, it is necessary to 

map it back to the normal time domain depending on following rule  

 

                                                                  

                                                                       (6e) 

 

Note, that the temperature T(b,t) used in (6a-c) is the difference between the in-depth 

temperature at b>0 and the initial temperature To. This nonlinear calibration integral equation 

also works when the semi-infinite assumption is adopted or the back surface is subjected to 

the same constant heat transfer coefficient during the two runs. 

 

This paper will 1) present the algorithm for above description in a concise and clear manner 

using visual aids for describing the mathematical manipulations and intrinsic assumptions, 2) 

describe the regularization method used for constructing the stable heat flux predictions, 3) 
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present numerical results based on simulated data obtained from a highly accurate 

finite-control volume solution to the forward problem with prescribed heat fluxes, and 4) 

discuss the extension of the approach to problems with two unknown boundary conditions. 
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